Differentiable Search Indices (DSIs) encode a corpus of documents in the parameters of a model and use the same model to map queries directly to relevant document identifiers. Despite the strong performance of DSI models, deploying them in situations where the corpus changes over time is computationally expensive because reindexing the corpus requires re-training the model. In this work, we introduce DSI++, a continual learning challenge for DSI to incrementally index new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviate forgetting, so we optimize for flatter loss basins and show that the model stably memorizes more documents (+12\%). Next, we introduce a generative memory to sample pseudo-queries for documents and supplement them during continual indexing to prevent forgetting for the retrieval task. Extensive experiments on novel continual indexing benchmarks based on Natural Questions (NQ) and MS MARCO demonstrate that our proposed solution mitigates forgetting by a significant margin. Concretely, it improves the average Hits@10 by $+21.1\%$ over competitive baselines for NQ and requires $6$ times fewer model updates compared to re-training the DSI model for incrementally indexing five corpora in a sequence.
translated by 谷歌翻译
该底漆是为了提供终身学习不同方面的详细摘要。我们从第2章开始,该第2章提供了终身学习系统的高级概述。在本章中,我们讨论了终身学习中的突出场景(第2.4节),提供8介绍,一个由不同终身学习方法组成的高级组织(第2.5节),列举Desiderata为理想的终身学习系统(第2.6节),讨论如何讨论如何讨论终身学习与其他学习范式有关(第2.7节),描述用于评估终身学习系统的常见指标(第2.8节)。对于那些毕生学习并希望在不关注特定方法或基准的读者中,本章更有用。
translated by 谷歌翻译
机器学习中的终身学习范式是一个有吸引力的替代方案,不仅是由于其与生物学学习的相似之处,而且它通过避免过度模型重新训练来减少能量浪费的可能性。对此范式的关键挑战是灾难性遗忘的现象。随着在机器学习中训练有素的模型的越来越受欢迎和成功,我们提出了问题:终身学习中的训练前比赛,特别是关于灾难性的遗忘?我们在大型预先训练模型的上下文中调查现有方法,并在各种文本和图像分类任务中评估其性能,包括使用15个不同的NLP任务的新型数据集进行大规模研究。在所有设置中,我们观察到,通用预训练隐含地减轻了在与随机初始化模型相比依次学习多个任务时灾难性忘记的影响。然后,我们进一步调查为什么预先训练缓解在这个环境中忘记。我们通过分析损失景观来研究这种现象,发现预先训练的重量似乎可以通过导致更宽的最小值来缓解遗忘。基于这一洞察力,我们提出了对当前任务损失和损失盆地锐利的共同优化,以便在连续微调期间明确鼓励更广泛的盆地。我们表明,这种优化方法导致与跨多个设置的任务顺序持续学习的性能相当,而无需保留具有任务数量的大小的内存。
translated by 谷歌翻译
尽管最近的多任务学习和自然语言处理的转移学习成功(NLP),但很少有效地研究了在训练中缩放任务数量的效果。迈出了这一目标,介绍了Exmix(极端混合物):跨越各个领域和任务家庭的大规模收集107个监督的NLP任务。使用EXMIX,我们研究了最大规模的多任务预培训的影响,并分析了普通任务家庭之间的共同培训转移。通过此分析,我们表明手动策划用于多任务预训练的理想任务,并不简单,而且多任务缩放可以自行改进模型。最后,我们提出了Ext5:使用自我监督跨度去噪和监督EXMIX的多任务目标预先训练的模型。通过广泛的实验,我们表明Ext5优于超级格,宝石,彩虹,封闭书QA任务的强大T5基线,以及Exmix之外的几个任务。 Ext5在预训练时也显着提高了样品效率。
translated by 谷歌翻译
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us to efficiently learn the range of magnitudes for individual as well as composite augmentation operations. RangeAugment uses an auxiliary loss based on image similarity as a measure to control the range of magnitudes of augmentation operations. As a result, RangeAugment has a single scalar parameter for search, image similarity, which we simply optimize via linear search. RangeAugment integrates seamlessly with any model and learns model- and task-specific augmentation policies. With extensive experiments on the ImageNet dataset across different networks, we show that RangeAugment achieves competitive performance to state-of-the-art automatic augmentation methods with 4-5 times fewer augmentation operations. Experimental results on semantic segmentation, object detection, foundation models, and knowledge distillation further shows RangeAugment's effectiveness.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Many real-world reinforcement learning tasks require control of complex dynamical systems that involve both costly data acquisition processes and large state spaces. In cases where the transition dynamics can be readily evaluated at specified states (e.g., via a simulator), agents can operate in what is often referred to as planning with a \emph{generative model}. We propose the AE-LSVI algorithm for best-policy identification, a novel variant of the kernelized least-squares value iteration (LSVI) algorithm that combines optimism with pessimism for active exploration (AE). AE-LSVI provably identifies a near-optimal policy \emph{uniformly} over an entire state space and achieves polynomial sample complexity guarantees that are independent of the number of states. When specialized to the recently introduced offline contextual Bayesian optimization setting, our algorithm achieves improved sample complexity bounds. Experimentally, we demonstrate that AE-LSVI outperforms other RL algorithms in a variety of environments when robustness to the initial state is required.
translated by 谷歌翻译
Spurious correlations in training data often lead to robustness issues since models learn to use them as shortcuts. For example, when predicting whether an object is a cow, a model might learn to rely on its green background, so it would do poorly on a cow on a sandy background. A standard dataset for measuring state-of-the-art on methods mitigating this problem is Waterbirds. The best method (Group Distributionally Robust Optimization - GroupDRO) currently achieves 89\% worst group accuracy and standard training from scratch on raw images only gets 72\%. GroupDRO requires training a model in an end-to-end manner with subgroup labels. In this paper, we show that we can achieve up to 90\% accuracy without using any sub-group information in the training set by simply using embeddings from a large pre-trained vision model extractor and training a linear classifier on top of it. With experiments on a wide range of pre-trained models and pre-training datasets, we show that the capacity of the pre-training model and the size of the pre-training dataset matters. Our experiments reveal that high capacity vision transformers perform better compared to high capacity convolutional neural networks, and larger pre-training dataset leads to better worst-group accuracy on the spurious correlation dataset.
translated by 谷歌翻译
A reliable critic is central to on-policy actor-critic learning. But it becomes challenging to learn a reliable critic in a multi-agent sparse reward scenario due to two factors: 1) The joint action space grows exponentially with the number of agents 2) This, combined with the reward sparseness and environment noise, leads to large sample requirements for accurate learning. We show that regularising the critic with spectral normalization (SN) enables it to learn more robustly, even in multi-agent on-policy sparse reward scenarios. Our experiments show that the regularised critic is quickly able to learn from the sparse rewarding experience in the complex SMAC and RWARE domains. These findings highlight the importance of regularisation in the critic for stable learning.
translated by 谷歌翻译
Spectral risk objectives - also called $L$-risks - allow for learning systems to interpolate between optimizing average-case performance (as in empirical risk minimization) and worst-case performance on a task. We develop stochastic algorithms to optimize these quantities by characterizing their subdifferential and addressing challenges such as biasedness of subgradient estimates and non-smoothness of the objective. We show theoretically and experimentally that out-of-the-box approaches such as stochastic subgradient and dual averaging are hindered by bias and that our approach outperforms them.
translated by 谷歌翻译